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1 Introduction
This paper presents an extension to the Pythagorean expectation for use in associ-
ation football (soccer). The Pythagorean expectation was first developed by James
(1980) to predict the win percentage of a baseball team from the observed number
of runs scored RS and runs allowed RA during the season:

Ŵ
M

=
RSγ

obs

RSγ
obs +RAγ

obs
(1)

In the above equation, Ŵ is the estimated number of wins divided by M matches
to give a win percentage, and γ is the Pythagorean exponent that minimizes the
root-mean-square difference between the predicted and observed winning percent-
ages. James initially set the value of γ to 2.0, which inspired the Pythagorean
name, but subsequent sabermetricians such as Davenport and Woolner (1999) have
derived through empirical analysis a Pythagorean exponent of 1.86. Miller (2007)
derived the Pythagorean formula from basic statistical principles and the assump-
tion that the runs scored and allowed were independent random variables drawn
from a Weibull distribution. His formula was virtually identical to James’, which
confirmed that the Pythagorean expectation was a probabilistic estimation of team
results based on run statistics.

The Pythagorean expectation is calculated at a few intervals during the sea-
son to assess whether a team is performing above or below expectations. A team
that exhibits a large difference between expected and observed wins (referred to in
this paper as a ”Pythagorean residual”\) could see its win-loss record attributed to
either luck or subtle yet significant factors in its play. It is thought that the Pythag-
orean expectation regresses toward the mean number of wins in the league, so that
teams with extremely high win percentages significantly overperform their expec-
tations and teams with extremely low win percentages significantly underperform
them.

The Pythagorean has been applied to baseball, basketball (Oliver (2004)),
American football (Schatz (2003)) and other sports leagues (Cochran and Black-
stock (2009)) with varying degrees of success. However, its applications to soccer
have not been as successful (Anonymous (2006)) and have generally resulted in an
underprediction of points won over a season. One reason for this is that the Py-
thagorean formula does not allow for the possibility of a tied result, which happens
in a nontrivial percentage of soccer matches during a given season. The inclusion
of drawn results also requires a redefinition of a win, which precludes the use of
James’ Pythagorean expectation.

This publication uses Miller’s derivation of the baseball Pythagorean to for-
mulate an extension to the Pythagorean for soccer and other sports in which a draw



result is a nontrivial event. Instead of estimating win percentage, the extended Py-
thagorean estimates points won per game. This change is consistent with the com-
mon practice of domestic soccer leagues to award points for wins and draws (cur-
rently defined as three points per win and one point per draw). A least-squares al-
gorithm is used to fit offensive and defensive goal distributions to a three-parameter
Weibull distribution, of which one of these parameters is the Pythagorean exponent.
The exponent is estimated for each team in a league competition and then averaged
to obtain a league Pythagorean exponent. Further analysis reveals that the league
Pythagorean exponent remains stable across multiple leagues in the same calen-
dar year and within a single league over multiple seasons, which gives support to
the notion of a ”universal” Pythagorean exponent. Application of the extended Py-
thagorean to results of domestic soccer leagues in Europe, Asia, and the Americas
shows excellent agreement between goal statistics and league records for a majority
of teams, and indicates the teams that strongly overperform or underperform with
respect to their expected performance.

The remainder of the paper is organized as follows. Section 2 presents the
derivation of the extended Pythagorean, starting with mathematical definitions of a
win and draw and proceeding to derivation of their respective probabilities. Sec-
tion 3 describes the least-squares algorithm used to estimate the Pythagorean ex-
ponent and outlines suggested procedures for implementing the extended Pythag-
orean. Section 4 presents results of statistical analyses performed on the extended
Pythagorean, and applies the formula to the analysis of soccer leagues in England,
the Netherlands, and the USA.

2 Extended Pythagorean Derivation

2.1 Statistical Preliminaries

There are several statistical preliminaries to be presented before the derivation of
the extended Pythagorean. These preliminaries are borrowed from the publication
by Miller (2007).

The goals scored and allowed by a team are modeled as statistically inde-
pendent random variables. This modeling assumption appears to be a fair one to
make in soccer because of the possibility of a draw. Moreover, researchers such as
Dixon and Robinson (1998) have presented results that give credence to the exis-
tence of statistical independence between offensive and defensive goals.



Furthermore, the goals scored and allowed by a team during a season are
modeled as random variables drawn from a three-parameter Weibull distribution:

f (x;α,β ,γ) =
γ
β

(
x−β

α

)γ−1

e−
(

x−β
α

)γ

, x ≥ β

= 0, x < β

The distribution parameter is defined as β , the scale parameter α , and the shape
parameter the Pythagorean exponent γ . Of course, a soccer team can only score
integer goals, but this assumption is useful in order to construct notions of a win or
draw. The use of a continuous distribution permits the computation of probabilities
with integration instead of discrete summations, which results in more tractable
solutions.

The distribution parameter β establishes a lower bound of possible scores.
In order to reconcile the issue of using a continuous statistical distribution with
discrete data, the data are placed into N bins, defined

[−.5, .5]∪ [.5,1.5]∪·· ·∪ [6.5,7.5]∪ [7.5,8.5]∪·· ·∪ [N − .5,N + .5] (2)

This construction moves the means of the bins to their centers, which is where all of
the data in the bins would be located. Because there are only integer goals in soccer,
the statistical model is continuous and the translation parameter is therefore β =
−0.5. The bins facilitate the integration of the distribution between the endpoints
of the bin, which permits the computation of draw probability.

The scale parameters αGS and αGA are related to the means of the two
Weibull distributions, the calculation of which was detailed by Miller (2007). The
means are equal to the average goals scored and goals allowed – GS and GA, re-
spectively, so the alpha terms are defined as the following:

αGS =
GS −β

Γ(1+ γ−1)
=

ĜS

Γ(1+ γ−1)
(3)

αGA =
GA −β

Γ(1+ γ−1)
=

ĜA

Γ(1+ γ−1)
(4)

The shape parameter γ defines the skewness in the goalscoring distributions.
This parameter will be estimated by a nonlinear least-squares algorithm, which will
be described further in the paper.

2.2 Definition of Wins and Draws

Figure 1 shows an XY-plane for which the axes represent the goals scored by team
X and team Y in a match. The grey squares are centered at identical X- and Y-



coordinates – (0,0), (1,1), (2,2) – and represent regions where the goals scored by
team X and Y are less than 0.5 goals apart. In the lower regions of the plane, team
X has scored at least 0.5 goal more than team Y, and in the upper regions of the
plane the situation is reversed.

The mathematical definition of a win by team X, having scored c goals, is
expressed as the following:

c− 1
2

< X < c+
1
2

0 < Y < c− 1
2

A draw at c goals is defined:

c− 1
2

< X < c+
1
2

c− 1
2

< Y < c+
1
2

Figure 1: Illustration of result outcomes between teams X and Y in a soccer match.
Grey regions represent draws at (c,c) goals, and blank regions represent wins.



2.3 Derivation of Win Probability

To derive the expression for win probability, one starts with the probability that
team X will score c goals (c > 0) and team Y fewer:

P(X = c,Y < c) =

c−β∫
c+β

c+β∫
β
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A substitution for β =−0.5 yields the following expression:

P(X = c,Y < c) =
[
e−(c/αGS)

γ
− e−((c+1)/αGS)

γ
][

1− e−(c/αGA)
γ
]

Finally sum over N, which defines the maximum number of goals, to obtain the
total probability of a win by team X:

P(X > Y ) =
N

∑
c=0

[
e−(c/αGS)

γ
− e−((c+1)/αGS)

γ
][

1− e−(c/αGA)
γ
]

(5)



2.4 Derivation of Draw Probability

To derive the probability of a draw, one starts with the probability that teams X and
Y will score the identical number of goals c > 0:

P(X = Y = c) =
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A substitution for β =−.5 yields the following expression:

P(X = Y = c) =
[
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γ
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γ
][

e−((c+1)/αGA)
γ
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The total probability for a draw between teams X and Y is obtained by summing
over N:

P(X = Y ) =
N

∑
c=0
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2.5 Extended Pythagorean Formula

The extended Pythagorean is the sum of the win and draw probabilities defined
in Sections 2.3 and 2.4 and is expressed as the number of points P̂ won over M
matches:

P̂
M = 3P(X > Y )+P(X = Y )

= 3 ·
N

∑
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It is more practical to use the goals scored/allowed statistics in the Pythagorean
formula, so the expressions αGS and αGA are substituted into the expression:

P̂
M = 3 ·
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where κ is

κ = Γ
(

1+
1
γ

)

3 Implementation

3.1 Least-Squares Estimation of Weibull Parameters

A nonlinear least-squares algorithm is used to determine the parameters α and γ that
give the best fit of the goalscoring histograms (xi, pi) to the Weibull three-parameter
distribution. (The translation parameter β has already been defined.) The critical
parameter is γ , which must provide a satisfactory fit for the offensive and defensive
goalscoring distributions simultaneously. The α terms are known precisely from
the goal data, but the estimated values are useful in assessing the goodness of the
data fit to the probability distribution.

The nonlinear least-squares algorithm will minimize the following cost func-
tion:

min
{αGF ,αGA,γ}

|| pi − fGF(xi;αGF ,−0.5,γ) ||2 + ||qi − fGA(xi;αGA,−0.5,γ) ||2 (8)

in which fGF and fGA are the Weibull probability functions for goals scored and
conceded, respectively, xi the number of goals and pi (xi) and qi (xi) the propor-
tion of goals scored and conceded, respectively. An iterative approach is used to
calculate the best-fit parameters:

∆ξ =
(
JT J

)−1 JT ∆y (9)

ξ k+1 = ξ k +∆ξ (10)

where

∆y =
[

pi − fGF (xi;αk
GF ,γ

k)
qi − fGA (xi;αk

GA,γ
k)

]
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]
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]
The partial derivatives of the Jacobian J are defined
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α
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The least-squares algorithm is a gradient-based solver and converges to a
solution within 20-30 iterations. There are some situations such as leagues with
split season tournaments (which is currently common practice in Latin America)
for the least-squares algorithm to become numerically sensitive. This problem can
be remedied with the inclusion of a line search procedure, but the threshold for
stopping the iteration may have to be raised.

3.2 Overall Procedures

There are two tasks to be carried out in the implementation of the extended Pythag-
orean: the computation of the league Pythagorean exponent, and the computation
of the extended Pythagorean itself.

League Pythagorean Exponent

1. Collect match result data over a given season for all teams in the league.
Arrange the data into goals scored and goals allowed columns for each team.

2. Compute a histogram of the goals scored and allowed per team.
3. Fit simultaneously the offensive/defensive goal histograms to the two-parameter

Weibull distribution (β = −0.5 ). The result will be {αGS,αGA,γ} for each
team.

4. Calculate the mean γ over all of the league teams, resulting in the league
Pythagorean exponent. The κ term should also be pre-calculated at this stage.



Computation of Extended Pythagorean

1. Collect total matches played, goals scored, and goals allowed for all teams in
the league.

2. Divide goals by total matches played to obtain average number of goals
scored or allowed.

3. Use the average goal values and league Pythagorean exponent to compute the
extended Pythagorean. The resulting value is the estimated point average,
which is multiplied by the number of matches and rounded up to obtain the
estimated number of league points.

4 Results and Discussion

4.1 League Pythagorean Exponent

The League Pythagorean exponent is defined as the arithmetic mean of Pythagorean
exponents of all of the teams in a league competition. It is essential to determine
the behavior of the league Pythagorean exponent over multiple seasons, as well
as the behavior of the exponent across multiple leagues in the same season. (Here,
”season” is defined as the European soccer season which runs from August to May.)
The behavior of the exponent across multiple leagues is of great interest because it
could infer the existence of a ”universal” Pythagorean exponent.

The behavior of the Pythagorean exponent for a single league over multiple
seasons is illustrated by collecting league data for the English Premier League from
the 1999-2000 season to the 2009-2010 season. The result data are used to develop
goal histograms for all the teams in the league and then fit those histograms to the
assumed Weibull distribution. Figure 2 shows a time history of the English Premier
League’s Pythagorean exponent. There is some oscillation present in the exponent
and a wide deviation in the single-season exponents on the order of 10-30% of the
mean, but the mean values remain within the 1.55-1.75 range.

To assess the behavior of the league Pythagorean exponent over multiple
leagues, result data are collected from 41 top-level domestic leagues during the
2009-10 European season (2009 in the case of leagues played within a calendar
year). A list of the leagues included in the study is presented in Table 1.

Figure 3 displays the league Pythagorean exponents grouped by region.
There is some oscillation in the league Pythagorean exponent, but the values re-
main within a somewhat narrow region. The mean value of the exponent is 1.66
± 0.26. There will always be uncertainty associated with the Pythagorean expo-
nent, but it appears that an exponent between 1.60 and 1.85 will provide a good fit



Figure 2: League Pythagorean exponent of English Premier League between the
1999-2000 and 2009-10 seasons.

Table 1: National soccer leagues included in Pythagorean study, 2009/2009-10
league season.

Region National Leagues
Austria, Belgium, England, Finland, France, Germany, Greece,

Europe Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania,
Russia, Spain, Sweden, Switzerland, Turkey, Ukraine

North America USA, Mexico, Honduras, Costa Rica, Guatemala, El Salvador,
Panama

South America Brazil, Argentina, Chile, Uruguay, Venezuela
Asia Saudi Arabia, China, Iran, Qatar, Japan, South Korea
Africa Egypt, South Africa, Tunisia

between observed and predicted point totals. In this study, the ”universal” Pythag-
orean exponent was set to 1.70.

4.2 League Expectation

With the league Pythagorean exponent determined, the extended Pythagorean is ap-
plied to various domestic soccer leagues around the world. The Pythagoreans for
the league sides are generated according to the procedures described in Section 3.2,
and a league Pythagorean exponent of 1.70 is used. The win and draw probabilities
are converted to league wins and draws, which are then used to tabulate the esti-



Figure 3: League Pythagorean exponent of national soccer leagues during the
2009/2009-10 season.

mated point totals. These totals are compared to observed point totals which do not
account for administrative rulings (e.g. point deductions).

Table 2 presents the final Pythagorean table of the English Premier League
during the 2009-10 season, ordered by observed point totals, then goal differential
and goals scored. The top seven clubs in the table performed in line with their
expectations. Toward the middle and lower ends of the table one encounters the
sides that significantly over- or under-achieved during the season. Liverpool was
not able to achieve the league results commensurate with their goal-scoring record,
and finished outside of the top places which ensure participation in the European
Champions League – an outcome that is disastrous for such an aspirational club. At
the other end of the table, West Ham’s goal statistics should have been sufficient
to allow them to finish in mid-table, yet they failed to meet such expectations and
nearly finished in the bottom three, which would have demoted them to the lower
division of English soccer (Football League Championship). The reverse situation
occurred to Wigan Athletic, which was expected to score 29 points yet achieved 36,
ensuring their Premier League status in the process. A look at their match results
showed that Wigan suffered a number of very heavy defeats yet scored narrow home
wins against top-tier clubs such as Arsenal, Chelsea, and Liverpool.

The estimated win-draw-loss records are presented in order to determine
the characteristics of the estimator. The extended Pythagorean does a better job of
predicting the number of wins for teams at the extremes of the league table. The
formula tends to overpredict the number of draws and losses, especially toward the



end of the table. However, the overprediction of draws is sometimes compensated
by the slight underprediction of wins, which results in a smaller Pythagorean resid-
ual. The teams with the larger Pythagorean residuals have won or lost at least three
more matches than estimated.

Table 2: Final Pythagorean table for English Premier League, 2009-10 season.
League Pythagorean

Team GP W D L GF GA P Ŵ D̂ L̂ P̂ ∆P
Chelsea 38 27 5 6 103 32 86 27 6 5 87 -1
Manchester United 38 27 4 7 86 28 85 26 7 5 85 0
Arsenal 38 23 6 9 83 41 75 23 8 7 77 -2
Tottenham Hotspur 38 21 7 10 67 41 70 20 9 9 69 1
Manchester City 38 18 13 7 73 45 67 20 9 9 69 -2
Aston Villa 38 17 13 8 52 39 64 17 11 10 62 2
Liverpool 38 18 9 11 61 35 63 20 10 8 70 -7
Everton 38 16 13 9 60 49 61 17 9 12 60 1
Birmingham City 38 13 11 14 38 47 50 11 11 16 44 6
Blackburn Rovers 38 13 11 14 41 55 50 11 10 17 43 7
Stoke City 38 11 14 13 34 48 47 10 11 17 41 6
Fulham 38 12 10 16 39 46 46 12 11 15 47 -1
Sunderland 38 11 11 16 48 56 44 12 10 16 46 -2
Bolton Wanderers 38 10 9 19 42 67 39 9 9 20 36 3
Wolverhampton Wanderers 38 9 11 18 32 56 38 8 10 20 34 4
Wigan Athletic 38 9 9 20 37 79 36 7 8 23 29 7
West Ham United 38 8 11 19 47 66 35 11 9 18 42 -7
Burnley 38 8 6 24 42 82 30 8 8 22 32 -2
Hull City 38 6 12 20 34 75 30 7 8 23 29 1
Portsmouth 38 7 7 24 34 66 28 8 9 21 33 -5

The Dutch Eredivisie is a domestic league with different characteristics
from the English Premier League in its higher scorelines and the dominance by
a small minority of clubs, albeit until very recently. Table 3 displays the league
Pythagorean table for the 2009-10 season. The season featured a record-breaking
season by Ajax Amsterdam, which scored 106 goals and allowed only 20, yet lost
the league championship to FC Twente by a single point. Ajax’s observed point
total was exactly in-line with its statistical expectations, but Twente outperformed
its expectations by twelve points – a margin of four games. One explanation could
lie in the variance in the goals allowed of the two sides; Twente’s variance of 0.68
was slightly smaller than Ajax’s 0.77, but it is not clear whether the differences in



variance explain Twente’s overachievement. The other overachiever in the Eredi-
visie was Heracles who performed two games better than expected, but they would
have earned their final place regardless. At the other end of the table, Waalwijk,
which finished in the direct relegation place, and Willem II, which finished in the
relegation playoff place, had poor seasons, but perhaps Sparta Rotterdam had a per-
formance that was expected of them. Overall, teams at the top of the table win
more matches than might have been draws, while teams at the very bottom lose
more matches that could have been draws.

The estimated win-draw-loss records of the teams illustrate how much Twente
overachieved in their title-winning season. Twente scored fewer goals than third-
placed PSV, and it appears that this created an estimated record that was much closer
to PSV’s. However, their defensive goal record might have made the difference in
a number of matches and could have been a contributing factor to their outsized
Pythagorean residual. It is worth mentioning that Ajax’s win-draw-loss record was
predicted exactly by the extended Pythagorean, as well as the records of Vitesse
and Sparta Rotterdam. As in the English Premier League, the teams with large Py-
thagorean residuals won more matches than predicted. An exception can be found
at the bottom of the table, where Waalwijk and Willem II exhibited large negative
Pythagorean residuals due to having fewer drawn matches. Unless the goalscoring
record is highly lopsided, the estimated number of draws in the league will vary
between 20-30%.

USA’s Major League Soccer has a regular season followed by playoffs, as
is typical in other North American sports leagues. Table 4 displays the Pythagorean
table for the 2010 regular season. The Pythagorean expectation reveals some differ-
ences between Major League Soccer and the two other European leagues examined.
All of the MLS sides perform roughly in line with the statistical expectations. Only
the Los Angeles Galaxy and the Columbus Crew overachieved by more than five
points in the league; Chicago Fire was the most underachieving team with a Pythag-
orean residual of -5. In European leagues, by comparison, it is not uncommon to
observe residuals of seven or more points, which would indicate an outlying perfor-
mance. MLS teams also score a reduced number of goals and exhibit much tighter
goal differences than the English or Dutch leagues, which might also account for the
smaller Pythagorean residuals and the more uniformly predicted number of draws.

In general, teams that finish at the top or bottom of leagues deserve to be
there by virtue of the fact that their point total is in line with the expectations from
their goal statistics. There are some exceptions, like FC Twente in the Netherlands
or Wigan Athletic in England. Teams at the very bottom not only deserve to be
relegated but also play much worse than their statistics would indicate, which might
indicate some sort of on-field breakdown – an event that is very typical of the worst-
performing teams in a league.



Table 3: Final Pythagorean table for Dutch Eredivisie, 2009-10 season.
League Pythagorean

Team GP W D L GF GA P Ŵ D̂ L̂ P̂ ∆P
Twente 34 27 5 2 63 23 86 22 8 4 74 12
Ajax 34 27 4 3 106 20 85 27 4 3 85 0
PSV 34 23 9 2 72 29 78 22 7 5 73 5
Feyenoord 34 17 12 5 54 31 63 18 9 7 63 0
AZ 34 19 5 10 64 34 62 19 8 7 65 -3
Heracles 34 17 5 12 54 49 56 14 8 12 50 6
Utrecht 34 14 11 9 39 33 53 13 10 11 49 4
Groningen 34 14 7 13 48 47 49 13 9 12 48 1
Roda JC 34 14 5 15 56 60 47 13 8 13 47 0
NAC Breda 34 12 10 12 42 49 46 11 9 14 42 4
Heerenveen 34 11 4 19 44 64 37 9 8 17 35 2
VVV-Venlo 34 8 11 15 43 57 35 10 8 16 38 -3
NEC 34 8 9 17 35 59 33 8 8 18 32 1
Vitesse 34 8 8 18 38 62 32 8 8 18 32 0
ADO Den Haag 34 7 9 18 38 59 30 9 8 17 35 -5
Sparta Rotterdam 34 6 8 20 30 66 26 6 8 20 26 0
Willem II 34 7 2 25 36 70 23 7 7 20 28 -5
RKC Waalwijk 34 5 0 29 30 80 15 5 6 23 21 -6

5 Conclusion
This publication has presented an extension of the Pythagorean expectation to as-
sociation football and other sports that permit draws. The formula is considerably
more complicated than the original because of the presence of the exponential and
Gamma function terms, as well as the summation terms in order to compute win and
draw probabilities. The other major contribution of the paper is the establishment
of a ”universal” Pythagorean exponent that can be used to develop expectations
for domestic leagues around the world over many seasons. The extended Pythag-
orean has been applied to a number of soccer leagues from around the world and
has been demonstrated to give good estimates of team performance as a function of
their goal scoring records and designate potential outliers in the competition; that
is, those teams that are significantly over- or underperforming with respect to their
statistical expectations.

The soccer Pythagorean is a team-centered metric in that it assesses perfor-
mance using the most important metric of all – goals. In the process, the Pythago-
rean answers the question, ”How is the team performing relative to expectations?”



Table 4: Final Pythagorean table for USA Major League Soccer, 2010 regular sea-
son.

League Pythagorean
Team GP W D L GF GA P Ŵ D̂ L̂ P̂ ∆P
Los Angeles Galaxy 30 18 5 7 44 26 59 15 8 7 53 6
Real Salt Lake 30 15 11 4 45 20 56 17 8 5 59 -3
Columbus Crew 30 15 8 7 42 32 53 13 8 9 47 6
Red Bull New York 30 15 6 9 38 29 51 13 9 8 48 3
FC Dallas 30 12 14 4 42 28 50 14 8 8 50 0
Seattle Sounders FC 30 14 6 10 39 35 48 12 8 10 44 4
Colorado Rapids 30 12 10 8 44 32 46 14 8 8 50 -4
San Jose Earthquakes 30 13 7 10 34 33 46 11 9 10 42 4
Kansas City Wizards 30 11 6 13 36 35 39 11 9 10 42 -3
Toronto FC 30 9 8 13 33 41 35 9 8 13 35 0
Chicago Fire 30 8 9 13 35 40 33 10 8 12 38 -5
Houston Dynamo 30 9 6 15 40 49 33 10 7 13 37 -4
New England Revolution 30 9 5 16 32 50 32 7 7 16 28 4
Philadelphia Union 30 8 7 15 35 49 31 8 7 15 31 0
CD Chivas USA 30 8 4 18 31 45 28 8 8 14 32 -4
DC United 30 6 4 20 21 47 22 5 8 17 23 -1

but not ”How will the team perform in the future given its current form?” The soc-
cer Pythagorean points out which teams might be performing well outside the 3-5
point differential, which would motivate further study of those teams. In the same
vein, the Pythagorean could form part of the package of coaching metrics.
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